Journals/Research Articles
- Lim, A.C.M., Ng, L.H.X., & Taeihagh, A. (2025). Biometric Data Landscape in Southeast Asia: Challenges and Opportunities for Effective Regulation. Computer Law & Security Review, Volume 56.
- Taeihagh, A. (2025). Governance of Generative AI. Policy and Society.
- Hu J., Liang J.W., Qin Z., Liao X., Zhou W.B., & Lin X.D. (2024). ADA-FInfer: Inferring Face Representations from Adaptive Select Frames for High-Visual-Quality Deepfake Detection. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC).
- Jaidka, K., Chen, T., Chesterman, S., Hsu, W., Kan, M.Y., Kankanhalli, M., Lee, M.L., Seres, G., Sim, T., Taeihagh, A., Tung, A., Xiao, X., & Yue, A. (2024). Misinformation, Disinformation, and Generative AI: Implications for Perception and Policy. Association for Computing Machinery. Digital Government: Research and Practice.
- Khanal, S., Zhang, H. & Taeihagh, A. (2024). Building an AI Ecosystem in a Small Nation: Lessons from Singapore's Journey to the Forefront of AI. Humanities and Social Sciences Communications, Volume 11, Article No. 866 (2024).
- Zhang, H., Khanal S., & Taeihagh, A. (2024). Public-Private Powerplays in Generative AI Era: Balancing Big Tech Regulation Amidst Global AI Race. Association for Computing Machinery. Digital Government: Research and Practice.
- Abbas, F. & Taeihagh, A. (2024). Unmasking Deepfakes: A Systematic Review of Deepfake Detection and Generation Techniques Using Artificial Intelligence. Expert Systems with Applications.
- Khanal, S., Zhang, H. & Taeihagh, A. (2024). Why and How is the Power of Big Tech Increasing in the Policy Process? The Case of Generative AI. Policy and Society.
- Chesterman, S. (2024). Good Models Borrow, Great Models Steal: Intellectual Property Rights and Generative AI. Policy and Society, 2024, 00(00), 1-15.
Conferences/Workshops
- Bai, Y., Cai, B.Y., Tan, Y.K., Chen, S., Shu.Y., & Chen, T. (2025). FSL-Rectifier: Rectify Outliers in Few-Shot Learning via Test-Time Augmentation.. The 39th Annual AAAI Conference on Artificial Intelligence.
- Neo, D., Winkler, S., & Chen, T. (2024). MaxEnt Loss: Constrained Maximum Entropy for Calibration under Out-of-Distribution Shift.. The 38th AAAI Conference on Artificial Intelligence.
- Bai, Y., Cai, B.Y., Tan, Y.K., Zheng, Z., Chen, S., & Chen, T. (2024). FSL-QuickBoost: Minimal-Cost Ensemble for Few-Shot Learning. Proceedings of the 32nd ACM International Conference on Multimedia , P8326-8335.
- Huang, Y., Zhang, S., Lakshmanan, L.V.S., Lin, W., Xiao, K., & Tang, B. (2024). Efficient and Effective Algorithms for A Family of Influence Maximization Problems with A Matroid Constraint. Proceedings of the Very Large Databases (VLDB) Endowment, Vol. 18, Issue 2.
- Ang, Y., Huang, Q., Bao, Y., Tung, A.K.H., & Huang, Z. (2024). TSGBench: Time Series Generation Benchmark. Proceedings of the International Conference on Very Large Databases (VLDB), Vol. 17, Issue 3.
- Wu, B., Huang, Q., & Tung, A.K.H. (2024). From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying. Proceedings of the International Conference on Very Large Databases (VLDB), Vol. 17, Issue 8.
- Ang, Y., Bao, Y., Huang, Q., Tung, A.K.H., & Huang, Z. (2024). TSGAssist: An Interactive Assistant Harnessing LLMs and RAG for Time Series Generation Recommendations and Benchmarking. Proceedings of the International Conference on Very Large Databases (VLDB), Vol. 17, Issue 12.
- Tang, Y. & Tung, A. (2024). Contextualized Speech Recognition: Rethinking Second-Pass Rescoring with Generative Large Language Models. Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI).
- Barik, A.M., Hsu, W., & Lee, M.L. (2024). Time Matters: An End-to-End Solution for Temporal Claim Verification. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP Industry).
- Fei, H., Luo, M., Xu, J., Wu, S., Ji, W., Lee, M.L., & Hsu, W. (2024). Fine-grained Structural Hallucination Detection for Unified Visual Comprehension and Generation in Multimodal LLM. Proceedings of ACM Multimedia (ACM MM) Workshop on Multi-modal Misinformation Governance in the Era of Foundation Models (MIS).
- Luo, M., Fei, H., Li, B., Wu, S., Liu, Q., Poria, S., Cambria, E., Lee, M.L., & Hsu, W. (2024). PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis. Proceedings of ACM Multimedia (ACM MM) Oral.
- Sun, Y., Huang, Q., Wang, Y., & Tung, A.K.H. (2024). DiversiNews: Enriching News Consumption with Relevant Yet Diverse News Articles Retrieval. Proceedings of Very Large Databases (VLDB) Endowment, Vol 17. Issue 12.
- Abbas, F., & Taeihagh, A. (2024). Semantic Facial Features and Expression Manipulation Using Multi-Level IC-DGAN Framework. International Joint Conference on Neural Networks (IJCNN).
- Furniturewala, S., Jaidka, K. & Sharma, Y. (2024). Impact of Decoding Methods on Human Alignment of Conversational LLMs. Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA). Association for Computational Linguistics (ACL).
- Yeo, G.C., Furniturewala, S., & Jaidka, K. (2024). Beyond Text: Leveraging Multi-Task Learning and Cognitive Appraisal Theory for Post-Purchase Intention Analysis. Findings of the Association for Computational Linguistics (ACL), pages 12353-12360.
- Furniturewala, S., Jandial, S., Java, A., Banerjee, P., Shahid, S. Bhatia, S., & Jaidka, K. (2024). “Thinking” Fair and Slow: On the Efficacy of Structured Prompts for Debiasing Language Models. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 213–227, Association for Computational Linguistics (ACL).
- Xu, J., Fei, H., Pan, L., Liu, Q., Lee, M.L., & Hsu, W. (2024). Faithful Logical Reasoning via Symbolic Chain-of-Thought. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL).
- Fei, H., Wu, S., Ji, W., Zhang, H., Zhang, M., Lee, M.L., & Hsu, W. (2024). Video-of-Thought: Step-by-Step Video Reasoning from Perception to Cognition. Proceedings of the 41st International Conference on Machine Learning (ICML, Oral).
- Qi, P., Yan, Z.H., Hsu, W., & Lee, M.L. (2024). SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection. Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR).
- Lee, S.J., Hsu, W., & Lee, M.L. (2024). An End-to-End Vision Transformer Approach for Image Copy Detection. CVPR Workshop on Multimodal Content Moderation (MMCM).
- Lee, S.J., Hsu, W., & Lee, M.L. (2024). Combatting Disinformation involving AI-Generated Images through Frequency-guided Channel and Spatial Attention. IJCAI Workshop on Trustworthy AI.
- Lu, X.Y., Pan, L.M., Liu, Q., Nakov, P., & Kan, M.Y. (2023). SCITAB: A Challenging Benchmark for Compositional Reasoning and Claim Verification on Scientific Tables. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
- Pan, L., Lu, X., Kan, M.Y., & Nakov, P. (2023). QACheck: A Demonstration System for Question-Guided Multi-hop Fact-Checking. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
- Pan, Y.K., Pan, L.M., Chen, W.H., Nakov, P., Kan, M.Y., & Wang, W.Y. (2023). On the Risk of Misinformation Pollution with Large Language Models. Proceedings of the Conference on Findings of Empirical Methods in Natural Language Processing (Findings of EMNLP).
- Pan, L.M., Zhang, Y.X., & Kan, M.Y. (2023). Investigating Zero- and Few-shot Generalization in Fact Verification. Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL).
- Xu, D., Fan, S.J., & Kankanhalli, M. (2023). Combating Misinformation in the Era of Generative AI Models. Proceedings of the 31st ACM International Conference on Multimedia (ACM MM).