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TL;DR
We improve Chain-of-Thought prompting by combining symbolic representation and rules in logical
reasoning.

I 1. Introduction

Figure 1: An illustrative example of logical reasoning via Chain-of-Thought and our pro-
posed Symbolic CoT (SymbCoT).

Logical reasoning involves
evaluating evidence, con-
structing arguments, and
deducing conclusions. While
LLMs excel in understand-
ing and generating human
language, their performance
in logical reasoning is lim-
ited by the complexities of
logical structures and the
need for precise, rule-based
deductions.
Limitations of Current
Techniques:
Chain-of-Thought (CoT):
Enhances LLM reasoning by
mimicking human thought but
struggles with rigorous logical
rules.
External Solvers (Logic-LM,
LINC):
Introduce errors and lose
information during translation
from natural language to
symbolic representations.

Advantages of SymbCoT:

• Integrates symbolic reasoning within LLMs, combining symbolic expressions with natural language.

• Captures precise logical rules while retaining contextual nuances.

• Eliminates the need for external systems, reducing translation errors and information loss.

I 2. SymbCoT Framework
SymbCoT consists of four main modules:

Figure 2: An illustration of our THOR framework for three-hop reasoning of implicit sentiment.

Translator Converts premises and questions from natural language into symbolic format, preparing the in-
put for logical analysis.

Planner breaks down the raw problem into smaller sub-problems, which develop a detailed, step-by-step
plan that connects the given premises to the question statement in both natural language and symbolic form.

Solver derives the answer through a sequential logical inference process given the premises and question
statement, along with a meticulously crafted plan. The Solver module emphasizes the importance of basing
logical deductions on symbolic inference rules.

Verifier Validates both the symbolic translations and the logical reasoning steps to ensure consistency and
correctness. If discrepancies or errors are found, the Verifier refines the steps to maintain the integrity of the
reasoning process.

Reasoning Steps
Step 1. Translating natural language context into symbolic

Please parse the context P and statement S into First-Order Logic

formulas

Step 2. Deriving plan based on the natural and symbolic context (Pc and Sc)

Please derive a step-by-step plan using the First-Order Logic rule for

determining the conclusion based on the context Pc and Sc

Step 3. Solving the problem given context and plan

Given Pc, Sc and I, Please solve the question based on First-Order Logic

rules

Step 4. Verifying the translation and solving process

Given Pc, Sc D and C, Please verify: 1) the symbolic context P 0
and S0

is consistent with the natural language P and S; 2) the solving step D
is logically valid
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Abstract

While the recent Chain-of-Thought (CoT) tech-
nique enhances the reasoning ability of large
language models (LLMs) with the theory of
mind, it might still struggle in handling logical
reasoning that relies much on symbolic expres-
sions and rigid deducing rules. To strengthen
the logical reasoning capability of LLMs, we
propose a novel Symbolic Chain-of-Thought,
namely SymbCoT, a fully LLM-based frame-
work that integrates symbolic expressions and
logic rules with CoT prompting. Technically,
building upon an LLM, SymbCoT 1) first trans-
lates the natural language context into the sym-
bolic format, and then 2) derives a step-by-step
plan to solve the problem with symbolic logi-
cal rules, 3) followed by a verifier to check the
translation and reasoning chain. Via thorough
evaluations on 5 standard datasets with both
First-Order Logic and Constraint Optimization
symbolic expressions, SymbCoT shows strik-
ing improvements over the CoT method consis-
tently, meanwhile refreshing the current state-
of-the-art performances. We further demon-
strate that our system advances in more faith-
ful, flexible, and explainable logical reasoning.
To our knowledge, this is the first to combine
symbolic expressions and rules into CoT for
logical reasoning with LLMs. Code is open at
https://github.com/Aiden0526/SymbCoT.

1 Introduction

Achieving human-like logical reasoning capabil-
ities is crucial for realizing AGI, which plays a
pivotal role in enabling intelligent systems to en-
gage in problem-solving, decision-making, and
critical thinking. Recently, LLMs (Patel et al.,
2023; Hahn et al., 2022) have demonstrated un-
precedented capabilities in semantic understanding,
casting a beacon of hope toward achieving AGI.
Further enhancing LLMs to achieve human-level
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Classic. Therefore, it can be inferred that Descampe is in the six-
way tie in the leaderboard of the 1992 du Maurier Classic. 

information is not given. Thus, the truth of the 

Since there is at least one person from Belgium in the six-way tie 
and Descampe is from Belgium, it is possible that Descampe is the 
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Figure 1: An illustrative example of logical reasoning
via Chain-of-Thought and our proposed Symbolic CoT
(SymbCoT).

reasoning abilities, particularly in logical reason-
ing, is of paramount importance. Logical reasoning
(Cummins et al., 1991) stands out as a quintessen-
tial form of reasoning that, unlike other types, is
crucial and challenging. It epitomizes a cognitive
process characterized by rigorous evidence evalua-
tion, argument construction, and logical deduction
(Markovits and Vachon, 1989). The latest trend
is integrating LLMs with symbolic solvers to en-
hance their performance (Olausson et al., 2023;
Pan et al., 2023). Unfortunately, these efforts
have been limited to using LLMs merely as text-to-
symbolic translators, with the core reasoning still
reliant on traditional external reasoners (Robinson,
1965). Such an approach, first, does not intrinsi-
cally strengthen LLMs’ capability in logical reason-
ing. Besides, over-reliance on external symbolic
solvers often results in inflexibility, information

Logical  reasoning involves 

eva lua t i ng  ev idence ,  con -

s t r u c t i n g  a r g u m e n t s ,  a n d 

deducing concluons.  While 

LLMs excel  in understand-

ing  and  genera t ing  human 

language, their performance 

in logical reasoning is limited 

by the complexities of logical 

s tructures and the need for 

precise, rule-based deductions.

Limi ta t ions  o f  Current 
Techniques: Chain-of-Thought 

(CoT): Enhances LLM reasoning 

by mimicking human thought but 

struggles with rigorous logical 

rules. External Solvers (Logic-

LM, LINC): Introduce errors 

and lose information during 

translation from natural language 

to symbolic representations.

Advantages of SymbCoT: 1) Integrates symbolic reasoning within LLMs, combining symbolic 
expressions with natural language; 2) Captures precise logical rules while retaining contextual 
nuances; 3) Eliminates the need for external systems, reducing information errors and loss.
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Figure 2: Overview of the workflow in our proposed symbolic CoT framework.

SymbCoT has four main modules: Translator, Planner, Solver, Verifier
Step 1. Translator translats natural language context into symbolic

Please parse the context P and statement S into

First-Order Logic formulas

Step 2. Planner derives plan based on the natural and symbolic context (Pc and Sc)

Please derive a step-by-step plan using the First-Order

Logic rule for determining the conclusion based on the

context Pc and Sc

Step 3. Solver solves the problem given context and plan

Given Pc, Sc and I, Please solve the question based on

First-Order Logic rules

Step 4. Verifier verifies the translation and solving process

Given Pc, Sc D and C, Please verify: 1) the symbolic

context P 0
and S 0

is consistent with the natural
language P and S; 2) the solving step D is logically

valid
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Experiment Results and Analysis
ProntoQA ProofWriter FOLIO Avg

• GPT-3.5-turbo
Naive 47.40 35.50 45.09 42.66
CoT 67.80 49.17 57.35 58.11
Logic-LM 61.00 58.33 62.74 60.69
SymbCoT 75.80 59.03 57.84 64.22

(+8.00) (+0.70) (-4.90) (+3.53)
• GPT-4
Naive 77.40 52.67 69.11 66.39
CoT 98.79 68.11 70.58 79.16
CoT-SC - 69.33 68.14 -
ToT - 70.33 69.12 -
CR - 71.67 69.11 -
DetermLR - 79.17 75.45 -
Logic-LM 83.20 79.66 78.92 80.59
SymbCoT 99.60 82.50 83.33 88.47

(+0.81) (+2.84) (+4.41) (+7.88)

Table 1: Performance on symbolic reasoning with First-
Order Logical representation.

LogicalDeduction AR-LSAT Avg
Naive 71.33 33.33 52.33
CoT 75.25 35.06 55.14
CoT-SC 74.67 - -
ToT 76.83 - -
CR 78.33 - -
DetermLR 85.00 - -
Logic-LM 87.63 43.04 65.34
SymbCoT 93.00 43.91 68.46

(+5.37) (+0.87) (+3.12)

Table 2: Results (using GPT-4) on symbolic reasoning
with Constraint Optimization representation.

4 Experiments
4.1 Settings
Model. Following prior work of Logic-LM (Pan
et al., 2023), we assess the baselines and our
method using GPT-3.5 (Ouyang et al., 2022) and
GPT-4 (OpenAI, 2023)2, ensuring a fair compari-
son with identical model parameters.
Dataset. Five standard datasets are employed,
including PrOntoQA (Saparov and He, 2023),
ProofWriter (Tafjord et al., 2021), FOLIO (Han
et al., 2022), LogicalDeduction (Srivastava et al.,
2022), and AR-LSAT (Zhong et al., 2022). Each of
them takes different symbolic representations and
introduces its own set of challenges in the topic of
logical reasoning. The primary metric for evalu-
ation is accuracy, measuring the multiple-choice
correctness of the questions.
Symbolic Structure. In datasets PrOntoQA,
ProofWriter, and FOLIO, we use FOL as sym-
bolic structure. To test the generalizability of our
framework among different symbolic structures,
we further consider the CO symbolic expression in
datasets LogicalDeduction and AR-LSAT.
Baseline. We compare with a range of estab-
lished baselines. Those based on GPT-3.5 are: 1)
Naive Prompting; 2) CoT (Wei et al., 2022); 3)

2Specifically, we use gpt-3.5-turbo-0613 and gpt-4-0613.
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Figure 3: Ablation study. Since the Solver is dependent
on the Planner, they have to be ablated simultaneously.

Logic-LM (Pan et al., 2023). On GPT-4, apart from
the above baselines, we further include more sys-
tems: 4) CoT-SC (Wang et al., 2023b); 5) ToT (Yao
et al., 2023); 6) Cumulative Reasoning (CR; Zhang
et al., 2023a); 7) DetermLR (Sun et al., 2023);

Appendix extends more details of the symbolic
structures (§B), the datasets (§C), and baselines
(§D), as well as the full prompt configurations (§I).

4.2 Main Result

Table 1 shows that our method significantly outper-
forms Naive, CoT, and Logic-LM baselines, with
gains of 21.56%, 6.11%, 3.53% on GPT-3.5, and
22.08%, 9.31% and 7.88% on GPT-4, respectively.
We notice the only exception is on the FOLIO
dataset with GPT-3.5, failing to surpass Logic-LM.
The underperformance points to challenges in non-
linear reasoning, reflecting the inherent challenge
for LLMs. But, our approach notably surpasses
all baselines across both datasets with GPT-4, es-
pecially outperforming Logic-LM by an average
of 7.88%, which demonstrates significant improve-
ments in complex reasoning tasks. In Table 2, we
show the results with CO symbolic expression on
two datasets. As seen, our approach surpasses both
CoT and Logic-LM by 13.32% and 3.12%, respec-
tively, again demonstrating its general versatility in
different symbolic reasoning expressions.

4.3 Model Ablation
To ascertain the individual impact of each mod-
ule within our framework, we perform an ablation
study. The patterns from Fig. 3 reveal that the con-
tributions to the overall efficacy of our method vary
across modules on GPT-4. Notably, the Planner and
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To ascertain the individual impact of each mod-
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Figure 4: The effect of reasoning depth with GPT-4
on ProofWriter. The red dual-head arrow indicates our
improvements over vanilla CoT.

Figure 5: Execution rate between Logic-LM and Ours.

study. The patterns from Fig. 3 reveal that the con-
tributions to the overall efficacy of our method vary
across modules on GPT-4. Notably, the Planner and
Solver components are identified as the most influ-
ential, enhancing performance by an average of
10.4%, followed by the Translator module, which
facilitates a secondary improvement of 6.3%. The
finding highlights the efficacy of our proposed plan-
then-solve design for conquering the raw questions
by dividing them into smaller ones. Additionally,
the use of symbolic representation and rules shows
significant reasoning enhancement.

5 Analysis and Discussion

We now delve into our system further and try to
explore why it advances.

5.1 Performance on Complex Reasoning
In our direct comparison of overall performance,
we have demonstrated that our approach surpasses
the baseline, particularly noting a significant en-
hancement in the performance of the CoT. Now,
we delve deeper into analyzing the performance
of different methods across varying levels of rea-
soning depth. Intuitively, a greater depth indicates
more complex problems. Observing Fig. 4, we
notice that as the depth increases, the improvement
over CoT becomes more pronounced, suggesting
that our advantage lies in tackling more challeng-

Figure 6: The left pie shows the error proportion from
the external solver due to 1) Information Loss (IL), 2) In-
formation Error (IE), and Others. The bar chart consists
of two parts. The left bar shows the false rate from the
external solver made by IL/IE adding up to 100%. The
right bar shows the reduced false rates via our method.

Figure 7: The proportion of faithful, unfaith-
ful, and false answers. Faithful/unfaithful denotes
whether the predicated correct answer is derived from
valid&reaonsable logical reasoning.

ing issues. Moreover, even at a reasoning depth of
5, our method continues to achieve the best perfor-
mance.

5.2 Robustness to Symbolic Syntax Error

In Fig. 5, we conduct a comparative analysis of our
fully LLM-based reasoner against methods that rely
on external resolvers, such as Logic-LM, specif-
ically focusing on the success rate of executing
symbolic expression syntax. 3 Notably, our method
achieves a remarkable execution success rate of up
to 100%. This represents a significant improvement
over Logic-LM by an average of 17.7% percentage
points. Our approach notably enhances the execu-
tion rate on the AR-LSAT. It boosts the success rate
by 67.4% from Logic-LM, where LLMs are more
prone to translating syntax errors. Remarkably, our
method consistently executes with 100% success,
showcasing remarkable robustness against syntax
errors.

5.3 Benefit of Hybrid Expression of Symbolic
And Natural Language

LLM’s translations from natural to symbolic lan-
guage sometimes omit crucial information or in-

3For instance, if there are 100 questions and the method
successfully executes 80 of them, then the execution rate is
80%.
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of different methods across varying levels of rea-
soning depth. Intuitively, a greater depth indicates
more complex problems. Observing Fig. 4, we
notice that as the depth increases, the improvement
over CoT becomes more pronounced, suggesting
that our advantage lies in tackling more challeng-
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the external solver due to 1) Information Loss (IL), 2) In-
formation Error (IE), and Others. The bar chart consists
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ing issues. Moreover, even at a reasoning depth of
5, our method continues to achieve the best perfor-
mance.

5.2 Robustness to Symbolic Syntax Error

In Fig. 5, we conduct a comparative analysis of our
fully LLM-based reasoner against methods that rely
on external resolvers, such as Logic-LM, specif-
ically focusing on the success rate of executing
symbolic expression syntax. 3 Notably, our method
achieves a remarkable execution success rate of up
to 100%. This represents a significant improvement
over Logic-LM by an average of 17.7% percentage
points. Our approach notably enhances the execu-
tion rate on the AR-LSAT. It boosts the success rate
by 67.4% from Logic-LM, where LLMs are more
prone to translating syntax errors. Remarkably, our
method consistently executes with 100% success,
showcasing remarkable robustness against syntax
errors.

5.3 Benefit of Hybrid Expression of Symbolic
And Natural Language

LLM’s translations from natural to symbolic lan-
guage sometimes omit crucial information or in-

3For instance, if there are 100 questions and the method
successfully executes 80 of them, then the execution rate is
80%.
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TL;DR
We improve Chain-of-Thought prompting by combining symbolic representation and rules in logical
reasoning.

I 1. Introduction
Logical reasoning involves evaluating evidence, constructing arguments, and deducing conclusions. While
LLMs excel in understanding and generating human language, their performance in logical reasoning is lim-
ited by the complexities of logical structures and the need for precise, rule-based deductions.

Figure 1: An illustrative example of logical reasoning via Chain-of-Thought and our proposed Symbolic CoT (SymbCoT).

• Limitations of Current Techniques:
– Chain-of-Thought (CoT):

* Enhances LLM reasoning by mimicking human thought but struggles with rigorous logical rules.
– External Solvers (Logic-LM, LINC):

* Introduce errors and lose information during translation from natural language to symbolic representa-
tions.

• Advantages of SymbCoT:
– Integrates symbolic reasoning within LLMs, combining symbolic expressions with natural language.
– Captures precise logical rules while retaining contextual nuances.
– Eliminates the need for external systems, reducing translation errors and information loss.

I 2. SymbCoT Framework
SymbCoT consists of four main modules:

Figure 2: An illustration of our THOR framework for three-hop reasoning of implicit sentiment.

Translator Converts premises and questions from natural language into symbolic format, preparing the in-
put for logical analysis.

Planner breaks down the raw problem into smaller sub-problems, which develop a detailed, step-by-step
plan that connects the given premises to the question statement in both natural language and symbolic form.

Solver derives the answer through a sequential logical inference process given the premises and question
statement, along with a meticulously crafted plan. The Solver module emphasizes the importance of basing
logical deductions on symbolic inference rules.

Verifier Validates both the symbolic translations and the logical reasoning steps to ensure consistency and
correctness. If discrepancies or errors are found, the Verifier refines the steps to maintain the integrity of the
reasoning process.

Reasoning Steps
Step 1. Translating natural language context into symbolic

Please parse the context P and statement S into First-Order Logic

formulas

Step 2. Deriving plan based on the natural and symbolic context (Pc and Sc)

Please derive a step-by-step plan using the First-Order Logic rule for

determining the conclusion based on the context Pc and Sc

Step 3. Solving the problem given context and plan

Given Pc, Sc and I, Please solve the question based on First-Order Logic

rules

Step 4. Verifying the translation and solving process

Given Pc, Sc D and C, Please verify: 1) the symbolic context P 0
and S0

is consistent with the natural language P and S; 2) the solving step D
is logically valid

I 3. Experiments

Main results

Further Analyses

Code Paper

Figure 8: The Improvement from GPT-3.5 to GPT-4.


