

Centre for Trusted **Internet and Community**

Efficient and Effective Algorithms for A Family of Influence Maximization Problems with A Matroid Constraint

Yiqian Huang, Shiqi Zhang, Laks V.S. Lakshmanan, Wenqing Lin, Xiaokui Xiao, Bo Tang (published in *Proceedings of the VLDB Endowment* (PVLDB) 2024)

Introduction

Influence Maximization (IM): find a set of users S () that

maximizes their expected influence (2 + 2) in a social network

Selected user Expected influenced user

IM with a Matroid Constraint:

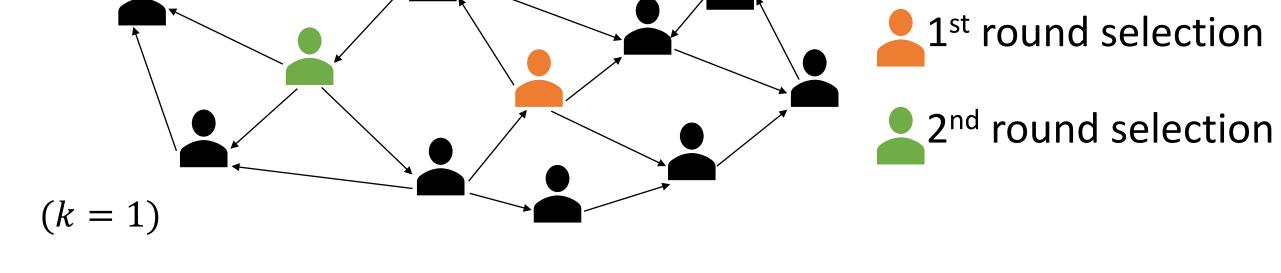
S must satisfy a matroid constraint M = (U, I): $S \subseteq U$ and $S \in I$, where I represents certain feasible solutions A matroid M allows constraints across *multiple sets of users* or *different objects*

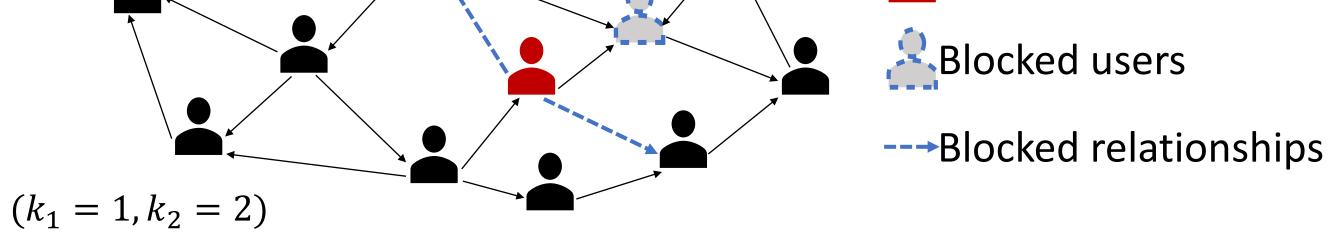
Example #1: IM in Multiple Rounds (MRIM)

Constraint: select $\leq k$ users each round

Example #2: Adversarial attacks on IM (AdvIM)

Constraint: $block \le k_1$ users and $\le k_2$ relationships



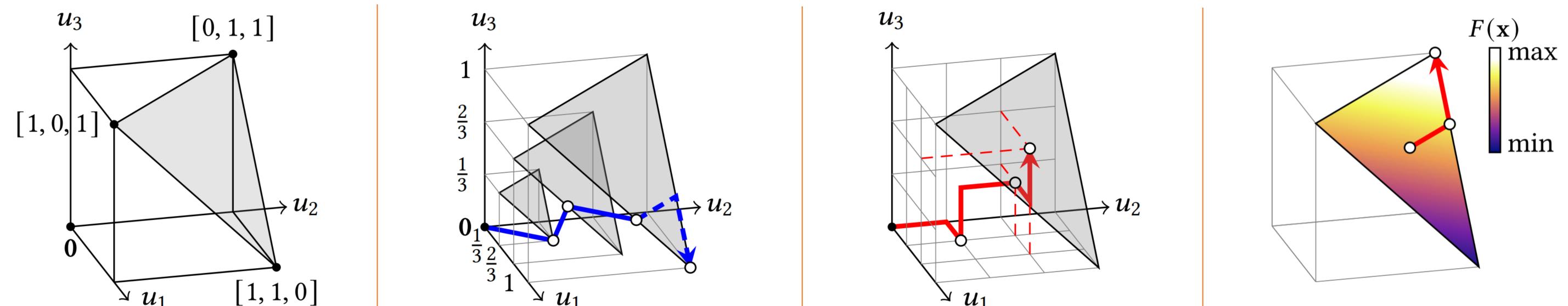


Objective: maximize expected influence from selected promoters (and)

Objective: minimize expected influence from misinformation source (

Proposed Solution: Boosting Approximation from 1/2- ϵ to (1-1/e- ϵ)

A hypergeometric view of a matroid with $U = \{u_1, u_2, u_3\}$ and $I = \{S \subseteq U : |S| \le 2\}$



[1, 1, 0] $\searrow u_1$

Overview

- polyhedron \rightarrow solution space
- shaded face \rightarrow partial solutions
- labeled dots \rightarrow final solutions

Previous Solver

- coarse-grained hill-climbing
- using sampling to estimate partial solutions
- $O(n^7 \log n)$ running time

$\searrow u_1$

Proposed Searching

- fine-grained search
- calculate partial solutions efficiently & deterministically •
- $\mathbf{O}_{\epsilon}(\mathbf{n} \cdot \operatorname{poly}(\log n))$ time

Proposed Rounding

round partial solutions to final solutions deterministically **no loss** in solution quality

Scalable implementations: follow the framework of OPIM-C and redesign the constants with rigorous analysis **Final Algorithm (AMP** and **RAMP)**: $(1 - 1/e - \epsilon) - approximation + scalable running time$

Experiments

AMP and its variants outperform all other solvers on 7 public datasets in terms of solution quality **X-axis: computation resource**

