Investigating the Robustness of LLM-Based Multi-Agent **Collaboration with Knowledge Conflicts**

Tianjie Ju^{1, 2}, Bowen Wang¹, Hao Fei², Mong-Li Lee², Wynne Hsu², Yun Li³, Qianren Wang³, Pengzhou Cheng¹, Zongru Wu¹, Zhuosheng Zhang¹, Gongshen Liu¹ ¹Shanghai Jiao Tong University, ²National University of Singapore, ³Cognitive AI Lab

Abstract

We investigate how LLM-based MASs cope with both mild and taskcritical knowledge conflicts in collaborative programming. We design four comprehensive evaluation metrics, introduce synthetic conflicts, and find that mild discrepancies from heterogeneous agents actually boost decision-making. Even when a single agent carries task-critical incorrect knowledge, the system often self-repairs by bypassing the conflicts, thus sustaining robust performance. However, our ablation study shows that once too many conflicting pieces of knowledge exceed the system's selfrepair capability, the performance deteriorates sharply. We conclude that moderate knowledge conflicts serve as a catalyst for multi-agent brainstorming, but overloading these conflicts ultimately undermines collaboration.

How Mild Knowledge Conflicts Affect Multi-Agent Decision-Making?

- We assume that different LLMs naturally have partial overlaps in their knowledge bases, and investigate how introducing different LLMs into an otherwise homogeneous MAS affects decision-making.
- We find that MASs possess the capability to engage in brainstorming within mild knowledge conflicts, ultimately leading to superior decision-making.

My Earlier Attempts

LLM-based MASs are prone to the influence of manipulated knowledge in group chat scenarios, which can lead to the spread of misinformation.

Motivation

• Investigate the impact of spontaneous mild knowledge conflicts in collaborative programming scenarios with tool-calling capabilities. Investigate how task-critical knowledge conflicts introduced via knowledge editing affect the decision-making.

How Task-Critical Knowledge Conflicts Risk MAS Robustness?

- We employ commonly used knowledge-editing methods to alter one coder's perception of task-critical knowledge.
- To our surprise, introducing task-critical knowledge conflicts via various knowledge-editing methods does not lead to a substantial decline in the overall robustness compared to group chat scenarios,.

	LLaMA 3.1 8B Instruct			Qwen 2.5 7B Instruct				InternLM 7B Chat				
Method	CR	TSR	CWR	CDR	CR	TSR	CWR	CDR	CR	TSR	CWR	CDR
w/o Conflicts	99.02	30.73	36.43	24.21	100.00	71.46	42.23	70.67	99.76	5.00	51.55	27.56
w/ Conflicts (ROME)	99.39	29.94	36.86	25.21	100.00	70.98	43.61	70.00	99.15	5.37	50.90	25.37
w/ Conflicts (MEND)	99.27	28.85	35.73	22.14	100.00	71.34	43.84	71.28	97.80	3.90	51.28	29.21
w/ Conflicts (IKE)	98.78	31.22	36.81	29.33	100.00	71.71	44.20	71.95	99.39	3.54	51.31	26.40

Can LLM-Based MASs Self-Repair Knowledge Conflicts?

We investigate whether generated codes contain references to the introduced task-critical knowledge conflicts.

This Paper:

Earlier Attempts:

Task: Write a Python function that prints the squares of numbers from 1 to 5.

We find that MASs exhibit a higher likelihood of circumventing these conflicts during decision-making, demonstrating their certain degree of self-repairing capability to mitigate the impact of task-critical knowledge conflicts.

Method	LLaMA	Qwen	InternLM
w/o Conflicts	65.24	61.59	78.17
w/ Conflicts (ROME) w/ Conflicts (MEND)	67.07↑ 1.83 67.20↑ 1.96	64.76 ^{+3.17} 63.05 ^{+1.46}	81.34 <u></u> 3.17 82.07 <u></u> 3.90
w/ Conflicts (IKE)	64.27↓ 0.97	63.41 + 1.82	83.78 + 5.61

However, MASs can only tolerate a limited degree of task-critical knowledge conflicts before their decision-making process is significantly impaired.

#Conflict	Scenario	CR	TSR	CWR	CDR
1	ROME	99.39	29.94	36.86	25.21
1	IKE	98.78	31.22	36.81	29.33
5	ROME	96.71	29.15	37.08	27.93
	IKE	98.29	30.49	35.79	24.39
10	ROME	62.35	28.41	20.98	38.88
10	IKE	97.44	29.14	36.56	27.79

Evaluation Metrics

- Completion Rate (CR): How often code is successfully generated.
- Task Success Rate (TSR): How often the code runs correctly.
- Code Writing Robustness (CWR): How similar the code outputs are across runs.
- Code Decision Robustness (CDR): How consistent the execution results are across runs.

Ablation Study

- Impact of Agent Number: It remains consistent with those of the previous studies when the number of coders is 4 or 5.
- Impact of Interaction Round: Longer conversations help MASs analyze the code they can accomplish and make more robust decisions.

#Coder	Scenario	CR	TSR	CWR	CDR	#Round	Scenario	CR	TSR	CWR	CDR
3	w/o Conflicts Mild Conflicts Task-Critical Conflicts	99.02 100.00 98.78	30.73 46.83 31.22	36.43 51.11 36.81	24.21 38.90 29.33	1	w/o Conflicts Mild Conflicts Task-Critical Conflicts	99.02 100.00 98.78	30.73 46.83 31.22	36.43 51.11 36.81	24.21 38.90 29.33
4	w/o Conflicts Mild Conflicts Task-Critical Conflicts	94.25 100.00 93.41	28.55 51.03 31.53	31.21 49.81 33.23	26.84 37.59 27.41	2	w/o Conflicts Mild Conflicts Task-Critical Conflicts	97.92 86.21 94.48	37.55 63.45 41.21	34.90 49.11 35.10	28.49 63.10 28.62
5	w/o Conflicts Mild Conflicts Task-Critical Conflicts	86.72 92.11 80.59	21.30 35.27 26.28	27.71 36.67 27.03	28.53 28.06 32.94	3	w/o Conflicts Mild Conflicts Task-Critical Conflicts	96.67 81.40 94.10	42.39 64.72 45.06	35.92 45.20 35.08	32.81 71.97 31.86