

Centre for Trusted

Internet and Community

Aggregating Diverse Cue Experts for AI-Generated Image Detection

Lei Tan¹, Shuwei Li¹, Mohan Kankanhalli¹, Robby T. Tan¹ ¹National University of Singapore

Motivation

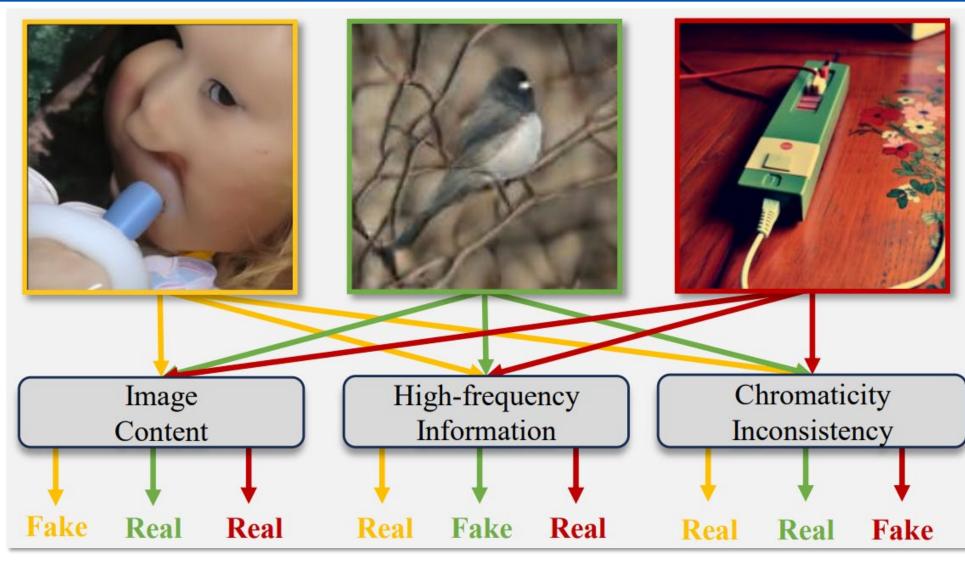


Figure 1: Motivation for MCAN

Different cues exhibit complementary properties in detecting synthetic content.

Method

Multi-cue Aggregation Network

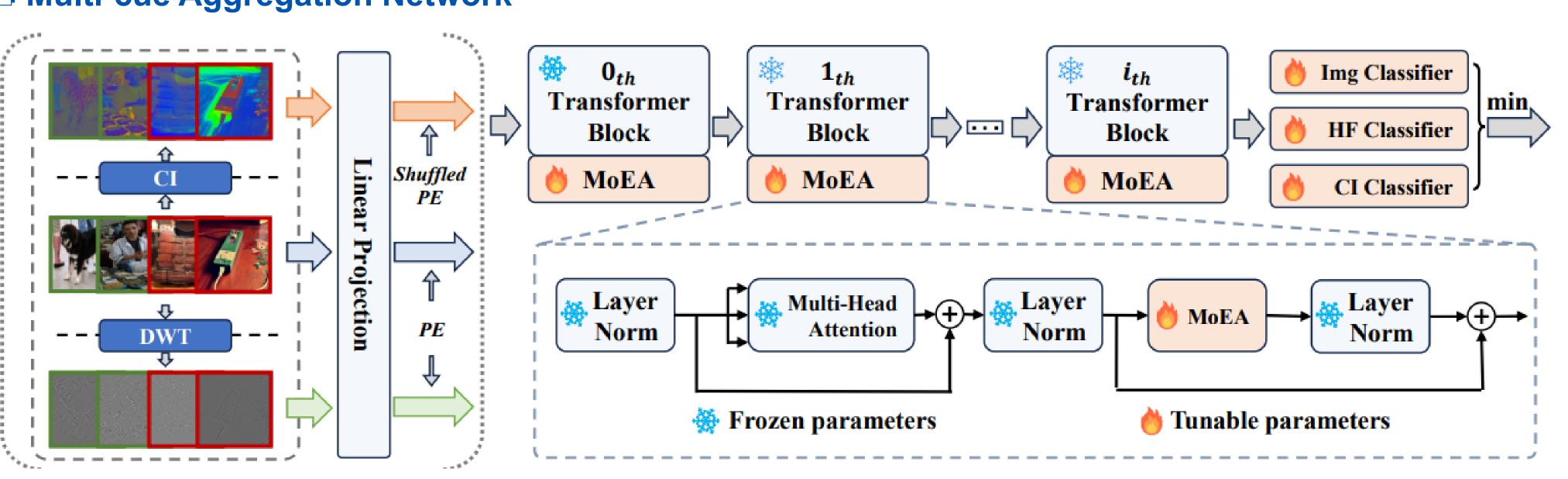


Figure 2: Overall architecture: MCAN combines image representation, high-frequency representation, and the novel chromaticity inconsistency as three distinct cues. To effectively integrate these cues, MCAN uses a mixture of encoder adapters that adapt efficiently to each cue's representation.

- A crucial yet often overlooked factor is that real images exhibit relatively minor quality variations, whereas generated images undergo more significant shifts due to discrepancies in the training data and the structure of generative models.

Contributions

Our key contributions are as follows:

- **MCAN**: A novel framework introducing a multi-cue aggregation strategy to enhance AI-generated image detection. MCAN dynamically integrates spatial, frequency, and chromaticity-based cues, unlike existing methods.
- Chromaticity Inconsistency (CI): A new representation that mitigates lighting intensity effects through chromaticity-based transformation, highlighting noise differences between real and generated images. CI complements both image content and high-frequency features in MCAN.

Chromaticity Inconsistency Mixture-of-encoder Adapter W_u W_d^2 W_d^1 W_d^0 Router Input Token Fake CI Fake Image Real CI Real Image Figure 4: Overall structure of MoEA. Figure 3: Visualization of Chromaticity Inconsistency (CI) transformation. ► To effectively integrate these cues, CI employs chromaticity transformation to minimize the influence of MCAN uses a mixture of encoder illumination, highlighting noise differences between real and generated adapters that adapt efficiently to images each cue's representation.

Mathad	Vanua		Avg							
Method	Venue	Midjourney	SDV1.4	SDV1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	Accuracy(%)
CNNSpot[44]	CVPR'20	58.2	70.3	70.2	57.0	57.1	67.7	56.7	56.6	61.7
Spec[53]	WIFS'19	56.7	72.4	72.3	57.9	65.4	70.3	61.7	64.3	65.1
F3Net[32]	ECCV'20	55.1	73.1	73.1	66.5	57.8	72.3	62.1	56.5	64.6
GramNet[20]	CVPR'20	58.1	72.8	72.7	58.7	65.3	71.3	57.8	61.2	64.7
DIRE[46]	ICCV'23	65.0	73.7	73.7	61.9	69.1	74.3	63.4	56.7	67.2
$LaRE^{2}[21]$	CVPR'24	66.4	87.3	87.1	66.7	81.3	85.5	84.4	74.0	79.1
LaRE ² -ViT [†] [21]	CVPR'24	72.5	76.1	76.0	67.9	80.6	73.7	69.0	70.5	73.3
FatFormer [†] [18]	CVPR'24	76.8	78.3	78.6	78.0	93.1	76.1	79.0	68.7	78.5
MCAN	-	83.3	88.0	88.2	85.9	96.9	87.0	90.2	97.7	89.7

Table 1: Performance on GenImage datasets.

Satting	Testing Subset												
Setting	Midjourney	SDV1.4	SDV1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	ACC.(%)				
Img only	88.1	99.6	99.5	75.6	93.2	98.7	89.8	51.4	87.0				
HF only	90.2	96.5	96.5	83.5	95.6	96.2	93.6	96.7	93.6				
CI only	87.5	96.9	96.7	81.7	85.2	96.7	94.1	51.7	86.3				
CI-Shuffled Only	89.1	97.2	97.0	86.7	86.5	96.9	95.0	70.0	89.8				
Naïve Combination(Img, HF, CI-Shuffled)	92.8	97.6	97.4	85.6	96.9	97.2	94.5	97.5	95.9				
MCAN-(Img, HF)	93.7	97.4	96.9	88.6	96.4	97.0	94.8	98.2	95.4				
MCAN(Img, CI-Shuffled)	93.3	98.6	98.5	88.8	97.5	98.4	96.5	69.5	92.6				
MCAN(HF, CI-Shuffled)	94.1	98.2	98.3	89.8	95.5	97.3	96.3	98.8	96.0				
MCAN-(Img, HF, CI-Shuffled)	94.3	98.8	98.5	90.2	98.6	98.8	96.8	98.8	96.9				

Table 2: Ablation study of the different components in MCAN.

			GA	N			Deep	Low	level	Perceptua	al loss		LD	N	Glid											(
Methods	Pro- GAN	Cycle-				Star- GAN	fakes	SITD	SAN	CRN I	IMLE 6	I	200 200 steps w/a			50 27	100	Dalle	mAcc							á), ,	9
CNNSpot [36]	100.0	GAN 85.2	GAN 70.2	GAN 85.7	GAN 79.0	91.7	53.5	66.7	48.7	86.3	86.3		steps w/c 54.0 55.				65.7	55.6	69.6	-20					6		3
Patchfor [7]	75.0	69.0	68.5	79.2	64.2	63.9	75.5	75.1	75.3				76.5 76.		1 1		68.5	67.9	71.2	20							
Co-occurrence [23]	97.7	63.2	53.8	92.5	51.1	54.7	57.1	63.1				I				69.6		67.6	66.9			ng Real		•			
Freq-spec [40]	49.9	99.9	50.5	49.9	50.3	99.7	50.1	50.0	48.0			50.9	70.7 70. 50.4 50.				50.4	50.0	55.5		l 🛑 Ir	ng Fake		:			
F3Net [27]	99.4	76.4	65.3	92.6	58.1	100.0	63.5	54.2	1 1				68.2 75.			83.3		66.3	71.3		C	Real					
UniFD [25]	100.0	98.5	94.5	82.0	99.5	97.0	66.6	63.0		59.5			94.2 73.		1 1	79.9	78.1	86.8	81.4		C	Fake					
LGrad [33]	99.8	85.4	82.9	94.8	72.5	99.6	58.0	62.5	50.0	50.7	50.8	77.5	94.2 95.	9 94.	8 87.4	90.7	89.6	88.4	80.3	-40	н	F Real		ente ((D)			
FreqNet [34]	97.9	95.8	90.5	97.6	90.2	93.4	97.4	88.9	59.0	71.9	67.4		84.6 99.			97.4		59.1	85.1			F Fake		•			
NPR [35]	99.8	95.0	87.6	96.2	86.6	99.8	76.9	66.9	98.6				97.7 98.			97.2	97.4	87.2	87.6			Tuke					
FatFormer [21]	99.9	99.3	99.5	97.2	99.4	99.8	93.2	81.1	68.0	69.5	69.5	76.0	98.6 94.	9 98.	7 94.4	94.7	94.2	98.8	90.9		-	40	-20	ò	20	40	
MCAN	100.0	99.6	98.8	97.0	99.3	100.0	94.0	86.7	68.9	87.3	87.3	70.9	98.8 94.	2 98.	5 97.4	97.2	97.1	98.8	93.3	Fig	ure 6:	Visual	ization of t	he learr	ned fea	ture space o	of MCAN
				Tabl	e 3: P	erfor	manc	ce on	Univ	ersalF	SakeDe	etect d	lataset.							C	,		nen tested o			A	
Training So	tting																Met	hods									
Training Se	ung	C	NSp	ot [3	37]	FreI	Dect [[13]	Fus	sing [1	15]	Gran	Net [2	2]	LNP	[20]	U	JniFI	D [25]	DI	RE [38] Pate	chcraft [41]	NPR	[35]	AIDE [39]	MCAN
ProGAN	N		56.	94		5	5.62			56.98		5	8.94		57.	11		57.	.22	5	58.19		53.76	57.	29	58.37	60.81
			(0)	11		4	6 96			57.07		6	0.95		55.0	63		55.	62	5	59.71		56.32	58.	13	62.60	69.61
SDV1.4	1		60.	11		-	6.86			57.07		U	0.75		55.	05		55.	02	·			00.02	50.	15	02.00	

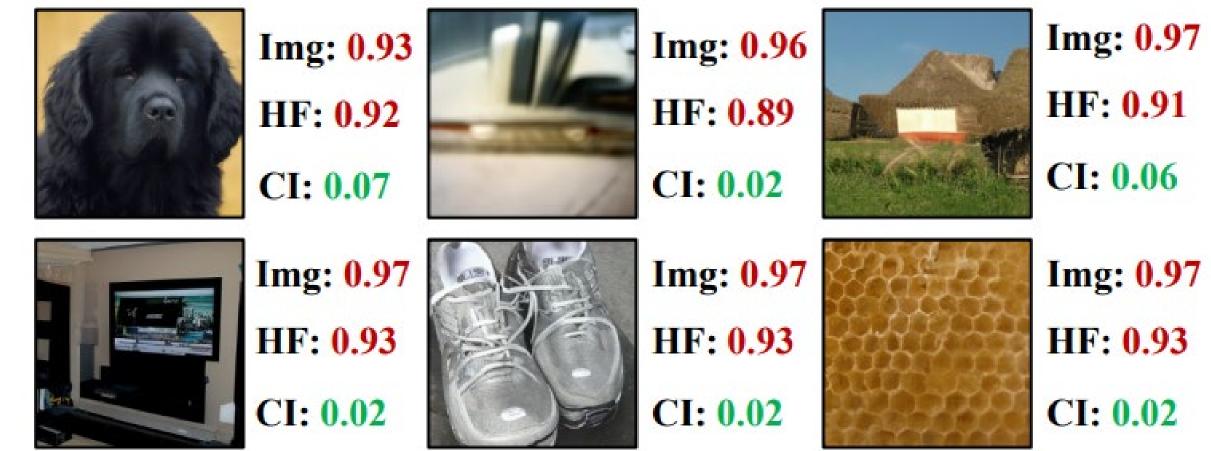
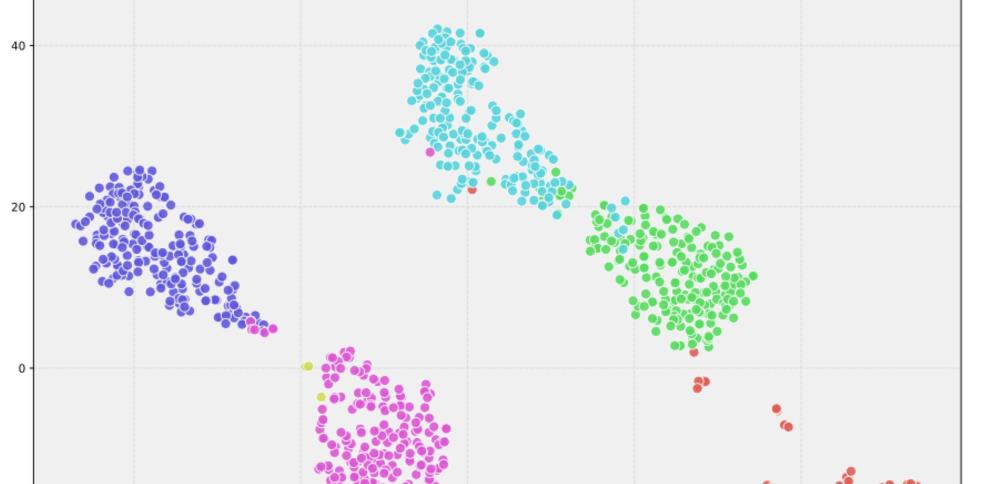



Figure 5: Visualization of classification results for generated images under different cues.

