Related Publications
- Ahmed, S. (2021). Fooled by the fakes: Cognitive differences in perceived claim accuracy and sharing intention of non-political deepfakes. Personality and Individual Differences, 182, 111074. https://doi.org/10.1016/j.paid.2021.111074
- Ahmed, S. (2021a). Who inadvertently shares deepfakes? Analyzing the role of political interest, cognitive ability, and social network size. Telematics and Informatics, 57, 101508. https://doi.org/10.1016/j.tele.2020.101508
- Ahmed, S. (2021b). Navigating the maze: Deepfakes, cognitive ability, and social media news skepticism. New Media & Society, https://doi.org/10.1177/14614448211019198
- Saha, S., & Sim, T. (2020, September). Is Face Recognition Safe from Realizable Attacks?. In 2020 IEEE international joint conference on biometrics (IJCB) (pp. 1-8). IEEE. https://ieeexplore.ieee.org/abstract/document/9304864/
- Agarwal, S., El-Gaaly, T., Farid, H., & Lim, S. (2020). Detecting deep-fake videos from appearance and behavior. arXiv preprint. Available at https://arxiv.org/abs/2004.14491
- Agarwal, A., Singh, R., Vatsa, M., & Noore, A. (2017). Swapped! digital face presentation attack detection via weighted local magnitude pattern. Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pp. 659-665.
- Ajzen, I., & Fishbein, M. NJ (1980). Understanding attitudes and predicting social behaviour. Prentice-Hall.
- Anderson, K. E. (2018). Getting acquainted with social networks and apps: combating fake news on social media. Library HiTech News, 35(3), 1-6.
- Archibald, M.M., Ambagtsheer, R.C., Casey, M.G., & Lawless, M. (2019). Using Zoom videoconferencing for qualitative data collection: Perceptions and experiences of researchers and participants. International Journal of Qualitative Methods, 18, 1-8. http//:10.1177/1609406919874596
- Arechar, A.A., Gätcher, S., & Molleman, L. (2018). Conducting interactive experiments online. Experimental Economy, 21, 99-131. https://doi.org/10.1007/s10683-017-9527-2.
- Arendt, F., & Matthes, J. (2017). Media effects: Methods of hypothesis testing. In P. Rössler, C.A. Hoffner, & van Zoonen, L. (Eds.), The International Encyclopedia of Media Effects (pp. 1-12). http://10.1002/9781118783764.wbieme0024
- Atodiresei, C.-S., Tănăselea, A., & Iftene, A. (2018). Identifying fake news and fake users on Twitter. Procedia Computer Science, 126, 451-461. https://doi.org/10.1016/j.procs.2018.07.279
- Bautista J.R., & Lin. T.T.C. (2017). Nurses' use of mobile instant messaging applications: A uses and gratifications perspective. International Journal of Nursing Practices, 2017;e12577. https://doi.org/ 10.1111/ijn.12577
- Britt, M. A., Rouet, J.-F., Blaum, D., & Millis, K. (2019). A reasoned approach to dealing with fake news. Policy Insights from the Behavioral and Brain Sciences, 6(1), 94-101. https://doi.org/10.1177/2372732218814855
- Buendgens-Kosten, J. (2014). Authenticity. ELT Journal, 68(4), 457-459.
- Bulger, M. & Davison, P. (2018). The promises, challenges and futures of media literacy. Journal of Media Literacy Education, 10(1), 1-21. Retrieved from https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1365&context=jmle
- Busselle, R. W., & Greenberg, B.S. (2000). The nature of television realism judgments: A reevaluation of their conceptualization and measurement. Mass Communication and Society, 3, 249-268. http://10.1207/S15327825MCS0323_05
- Cha, J. (2016). Television use in the 21st century: An exploration of television and social television use in a multiplatform environment. First Monday, 21(2). https://doi.org/10.5210/fm.v21i2.6112
- Chang, Y. Li, M. & Lyu, S. (2018). In ictu oculi: Exposing ai created fake videos by detecting eye blinking,” Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1-7.
- Chen, T., Kumar, A., Nagarsheth, P., Sivaraman, G., & Khoury, E. (2020). Generalization of audio deepfake detection. Proceedings of Odyssey 2020 The Speaker and Language Recognition Workshop, pp. 132-137.
- Cho, H., Shen, L. & Wilson, K. (2014). Perceived realism: Dimensions and roles in narrative persuasion. Communication Research, 41(6), 828-851. http:// 10.1177/0093650212450585
- Colliander J. (2019). This is fake news': investigating the role of conformity to other users' views when commenting on and spreading disinformation in social media. Computers in Human Behavior, 97, 202-215. https://doi.org/10.1016/j.chb.2019.03.032
- Cybenko, A. K., & Cybenko, G. (2018). AI and fake news. IEEE Intelligent Systems, 33(5), 3-7. https://doi.ieeecomputersociety.org/10.1109/MIS.20 18.2877280
- Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
- Davison, W.P. (1983). The third-person effect in communication. Public Opinion Quarterly, 47(1), 1-15.
- Diakopoulos, N. (2019). Automating the news: How algorithms are rewriting the media. Harvard University Press.
- Diakopoulos, N. & Johnson, D. (2021). Anticipating and addressing the ethical implications of deepfakes in the context of elections. New Media & Society, 23(7) 2072-2098. http://doi.org/10.1177/1461444820925811
- Dwivedi, Y.K., Rana, N.P., Jeyaraj, A., Clement, M., & Williams, M.D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a revised theoretical model. Information System Frontiers, 21, 719-734. https://doi.org/10.1007/s10796-017-9774-y
- Dobber, T., Metoui, N., Trilling, D., Helberger, N., & de Vreese, C. (2020). Do (microtargeted) deepfakes have real effects on political attitudes?” The International Journal of Press/Politics 26, 69-91. https://doi.org/10.1177/1940161220944364
- Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt, Brace, & Janovich
- Eliseev, E.D., & Marsch, E.J. (2021). Externalizing autobiographical memories in the digital age. Trends in Cognitive Science. https://doi.org/10.1016/j.tics.2021.08.005
- Enli, G. (2015). Mediated authenticity: How the media constructs reality. New York: Peter Lang.
- Figueira, A., & Oliveira, L. (2017). The current state of fake news: challenges and opportunities. Procedia Computer Science, 121, 817-825. https://doi.org/10.1016/j.procs.2017.11.106
- Fine, G.A. (2003). Crafting authenticity: The validation of identity in self-taught art. Theory and Society, 32(2),153-80.
- Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention and behavior: an introduction to theory and research. Addison-Wesley.
- Fikse, T.D. (2018). Imagining deceptive deepfakes. An ethnographic exploration of fake videos. Master's thesis. University of Oslo.
- Floridi, L. (2018). Artificial Intelligence, deepfakes and a future of ectypes. Philosophy & Technology, 31(3), 317-321.
- Gibson, C. B., McDaniel, D., & Szkudlarek, B. (2012). Tales from the (multicultural) field: Toward developing research conducive to proximal theory building. In A. M. Ryan, F. L. Oswald, & F. T. L. Leong (Eds.), Conducting multinational research projects in organizational psychology: Challenges and opportunities (pp. 9-27). Washington, DC: American Psychological Association.
- Giorgi, A. (1997). The theory, practice, and evaluation of the phenomenological method as a qualitative research procedure. Journal of Phenomenological Psychology, 28(2), 235-260.
- Gottfried, J. (2019, June 14). About three-quarters of Americans favor steps to restrict altered videos and images. Pew Research Center. Available at: https://www.pewresearch.org/fact-tank/2019/06/14/about-three-quarters-of-americans-favor-steps-to-restrict-altered-videos-and-images/
- Grady, R.H., Ditto, P.H., & Loftus, E.F. (2021). Nevertheless, partisanship persisted: fake news warnings help briefly, but bias returns with time. Cognitive Research 6, 52. https://doi.org/10.1186/s41235-021-00315-z
- Greene, J., Caracelli, V., & Graham, W. (1989). Toward a conceptual framework for mixed method evaluation designs. Educational Evaluation and Policy Analysis, 11, 255-274.
- Greenbaum, T. (2003). The gold standard? why the focus group deserves to be the most respected of all qualitative research tools. Quirk's Marketing Research Review, 17, 22-27.
- Groh, M., Epstein, Z., Firestone, C., & Picard, R. (2021). Comparing human and machine deepfake detection with affective and holistic processing. arXiv preprint arXiv:2105.06496.
- Guest, G., Namey, E., & McKenna, K. (2017). How many focus groups are enough? Building an evidence Base for nonprobability sample sizes. Field Methods, 29(1), 3-22. http:// 10.1177/1525822X16639015
- Gundumogula. M. (2020). Importance of focus groups in qualitative research. International Journal of Humanities and Social Science, 8(11), 299-302. http://10.24940/theijhss/2020/v8/i11/HS2011-082
- Gunther, A. C., Perloff, R. M., & Tsfati, Y. (2007). Public opinion and the third-person effect. In W. Donsbach & M. Traugott (eds.), The SAGE Handbook of Public Opinion (pp. 184-191). Sage.
- Hall, A. (2009). Realism and reality TV. In R. L. Nabi & M.B. Oliver (eds.), The SAGE Handbook of Media Processes and Effects (pp. 423-438). Sage.
- Hancock, J.T. & Bailenson, J.N. (2021). The social impact of deepfakes. Cyberpsychology, Behavior, and Social Networking, 24(3). https://doi.org/10.1089/cyber.2021.29208.jth
- Hancock, J.T. & Bailenson, J.N. (2021). The social impact of deepfakes. Cyberpsychology, Behavior, and Social Networking, 24(3). https://doi.org/10.1089/cyber.2021.29208.jth
- Hancock, J. T., Naaman, M., & Levy, K. (2020). AI-mediated communication: Definition, research agenda, and ethical considerations. Journal of Computer-Mediated Communication, 25(1), 89-100. http://10.1093/jcmc/zmz022
- Haut, K., Wohn, C., & Antoni, V. (2021). Could you become more credible by being white? Assessing impact of race on credibility with deepfakes. arxiv.org/pdf/2102.08054.pdf
- Hennink, M.M., Kaiser, B.N., & Weber, M.B. (2019). What influences saturation? Estimating sample sizes in focus group research. Qualitative Health Research, 29(10), 1483-1496. https://doi.org/10.1177/1049732318821692th
- Hogan, J.W., Roy, J., & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statistics in Medicine, 23, 1455-1497. http://10.1002/sim.1728
- Holloway, I., & Wheeler, S. (2010). Qualitative research in nursing and healthcare. Wiley-Blackwell.
- Hwang, Y., Ryu, J.Y., & Jeong, S-H. (2021). Effects of disinformation using deepfake: The protective effect of media literacy education. Cyberpsychology, Behavior, and Social Netwoking, 24(3), 188-193. https://doi.org/10.1089/cyber.2020.0174
- Iacobucci, S., De Cicco, R., Michetti, F., Palumbo, R., & Pagliaro, S. (2021). Deepfakes unmasked: The effects of information priming and bullshit receptivity on deepfake recognition and sharing intention. Cyberpsychology, Behavior, and Social Netwoking, 24(3), 194-202. https://doi.org/10.1089/cyber.2020.0149
- Jang, S.M., & Kim, J.K. (2018). Third person effects of fake news: Fake news regulation and media literacy interventions. Computers in Human Behavior, 80, 295-302. https://doi.org/10.1016/j.chb.2017.11.034
- Jones, B. (2016). Authenticity in political discourse. Ethical Theory and Moral Practice, 19(2), 489-504.
- Johnson, R.B., & Christensen, L.B. (2017). Educational research: Quantitative, qualitative, and mixed approaches. 6th edition. Sage.
- Kaplowitz, M., & Hoehn, J. (2001). Do focus groups and individual interviews reveal the same information for natural resource valuation? Ecological Economics, 36, 237-247.
- Karasavva, V. & Noorbhai, A. (2021). The real threat of deepfake pornography: A review of Canadian Policy. Cyberpsychology, Behavior, and Social Netwoking, 24(3), 203-209. https://doi.org/10.1089/cyber.2020.0272
- Katz, E., Blumler, J. G., & Gurevitch, M. (1974). Utilization of mass communication by the individual. In J. G. Blumler and E. Katz (Eds.), The uses of mass communications: Current perspectives on gratifications research (pp. 19-32). Sage.
- Kidd, P., & Parshall, M. (2000). Getting the focus and the group: Enhancing analytical rigor in focus group research. Qualitative Health Research, 10, 293-308.
- Kietzmann, H. , Lee, L.W., McCarthy, I.P. Kietzmann, T.C. (2020). Deepfakes: Trick or treat. Business Horizons, 63(2), 135-146. https://doi.org/10.1016/j.bushor.2019.11.006
- Kite, J. & Phongsavan, P. (2017). Insights for conducting real-time focus groups online using a web conferencing service, F1000Res, 6 http://10.12688/f1000research.10427.1
- Korshunov, P. & Marcel, S. (2020, 7 September). Deepfake detection: humans vs. machine. arXiv:2009.03155v1 [cs.CV] 7 Sep 2020
- Korshunov, P. & Marcel, S. (2018). Deepfakes: a new threat to face recognition? assessment and detection. arXiv preprint. Available at https://arxiv.org/abs/1812.08685
- Kwok, A.O. J., & Koh, S. G. M. (2021) Deepfake: a social construction of technology perspective, Current Issues in Tourism, 24(13), 1798-1802. http://10.1080/13683500.2020.1738357
- Krueger, R., & Casey, M. (2015). Focus groups: A practical guide for applied research (5th ed.). Sage.
- Laishram L., Rahman M.M., & Jung S.K. (2021) Challenges and Applications of Face Deepfake. In H. Jeong & K. Sumi (Eds.), Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_11
- Larrea Estefanía, L. (2015). Estudio sobre la escucha de la voz del locutor con y sin su imagen: análisis del proceso perceptivo y cognitivo del mensaje. PhD thesis. Barcelona: Universitat Pompeu Fabra.
- Lee, E-J. (2020). Authenticity model of (mass-oriented) computer-mediated communication: Conceptual explorations and testable propositions. Journal of Computer-Mediated Communication, 25(1), 60-73. https://doi.org/10.1093/jcmc/zmz025
- Lederman, R.P. (1993) Comparative and consistent approaches to exploratory research." American Journal of Maternal Child Nursing, 18(2), 107.
- Lindholm, C. (2008). Culture and authenticity. Blackwell.
- Luo, M., Hancock, J. T., & Markowitz, D. M. (2020). Credibility perceptions and detection accuracy of fake news headlines on social media: Effects of truth-bias and endorsement cues. Communication Research, Advance online publication, 1-25. http://10.1177/0093650220921321
- Lynn, P. (2009). Methodology of longitudinal surveys. John Wiley & Sons.
- Lynn, P., Couper, M. and Watson, N. (2019) Longitudinal surveys. Unique opportunities and unique methodological challenges. Longitudinal & Life Course Studies, 10(4), 415-420. http:// 10.1332/175795919X15683588414527
- Ma, H., Yi, H., Tao, J., Bai, Y., Tian, Z., & Wang, C. (2021, 15 April). Continual learning for fake audio detection. arXiv:2104.07286v1 [cs.SD]
- Mao, A., Chen, Y., Gajos, K.Z., Parkes, D.C., Procaccia, A.D., Zhang, H. (). TurkServer: enabling synchronous and longitudinal online experiments. Human Computation AAAI Technical Report WS-12-08, 1-39.
- Maertens, R., Roozenbeek, J., Basol, M. & van der Linden, S. (2020). Journal of Experimental Psychology: Applied, 1-16. http://dx.doi.org/10.1037/xap0000315
- Metzger, M.J., Flanagin, A.j., Eyal, K., Lemus, D.R., & Mccann, R.M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. Annals of the International Communication Association, 27(1), 293-335, http:// 10.1080/23808985.2003.11679029
- Molleda, J.C. (2012). Authenticity and the construct's dimensions in public relations and communication research. Journal of Communication Management,14(3):223-36.
- Montserrat, D.M., Hao, H., Yarlagadda, S.K., Baireddy, S. Shao, R., Horvath, J., Bartusiak, E., Yang, J., Guera, D., Zhu, F., & Delp, E.J. (2020). Deepfakes detection with automatic face weighting. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2851-2859.
- Morgan, D.L. (1997). Focus groups as qualitative research. Second edition. Sage.
- Müller, N.M., Markert, K., & Bottinger, K. (2021, July 20). Human perception of audio deepfakes. arXiv:2107.09667v1 [cs.HC]. Available at https://arxiv.org/pdf/2107.09667.pdf
- Murphy, G., & Flynn, E. (2021, online). Deepfake false memories. Memory. https://doi.org/10.1080/09658211.2021.1919715
- Newman, A., Bavik, Y.L., Mount, M., & Shao, B. (2021). Data collection via online platforms: Challenges and recommendations for future research. Applied Psychology, 70(3), 1380-1402. https://doi.org/10.1111/apps.12302
- Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2307-2311). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICASSP.2019.8682602
- Oliver, R.L. (1977). Effect of expectation and disconfirmation on postexposure product evaluations: an alternative interpretation. Journal of Applied Psychology, 62(4), 480-486. https://doi.org/10.1037/0021-9010.62.4.480
- Oliver, R.L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405
- Onwuegbuzie, A. J., & Johnson, R.B. (2006). The “validity” issue in mixed research. Research in the Schools, 13, 48-63.
- Palan, S., & Schitter, C. (2021). Prolific.ac. A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22-27. https://doi.org/10.1016/j.jbef.2017.12.004
- Palmgreen, P., Wenner, L. A., & Rosengren, K. E. (1985). Uses and gratifications research: The past ten years. In K. E. Rosengren, L. A. Wenner, & P. Palmgreen (Eds.), Media gratifications research: Current perspectives (pp. 11-37). Sage.
- Paris, B., & Donovan, J. (2019). Deepfakes and cheap fakes. The manipulation of audio and visual evidence. Data & Society. Retrieved from: https://datasociety.net/wp-content/uploads/2019/09/DS_Deepfakes_Cheap_FakesFinal-1-1.pdf
- Perks, L.G., & Turner, J.S. (2019). Podcasts and productivity: A qualitative Uses and Gratifications Study. Mass Communication and Society, 22(1), 96-116. https://doi.org/10.1080/15205436.2018.1490434
- Pink, S., & Morgan, J. (2013). Short-term ethnography: Intense routes to knowing. Symbolic Interaction, 36, 351-361. https://doi.org/10.1002/symb.66.
- Polit, D.F., & Beck, C.T. (2012). Nursing research: generating and assessing evidence for nursing practice (9th ed.). Lippincott, Williams & Wilkins.
- Popova, L. (2010). Perceived reality of media messages: Concept explication and testing. Unpublished doctoral dissertation. Santa Barbara: University of California, Santa Barbara.
- Rabinovich, A., Morton, T.A., Birney, M.E., (2012). Communicating climate science: The role of perceived communicator's motives. Journal of Environmental Psychology, 32(1),11-8.
- Reid-Searl, K., & Happell, B. (2012). Supervising nursing students administering medication: a perspective from registered nurses. Journal of Clinical Nursing, 21(13/14), 1998-2005.
- Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. Proceedings of the International Conference on Computer Vision (ICCV), pp. 1-11. Available at https://openaccess.thecvf.com/content_ICCV_2019/html/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.html
- Rubin, A. M. (2002). The uses-and-gratifications perspective of media effects. In J. Bryant & D. Zillmann (Eds.), Media effects: Advances in theory and research (pp. 525-548). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
- Rubin, R.B., Palmgreen, P., & Sypher, H.E. (2004a). Source credibility scale - McCroskey. Communication Research Methods. Routledge.
- Rubin, R.B., Palmgreen, P., & Sypher, H.E. (2004b). Source credibility scale - Berlo. Communication Research Methods. Routledge.
- Rubin, R.B., Palmgreen, P., & Sypher, H.E. (2004b). Perceived realism scale - Berlo. Communication Research Methods. Routledge.
- Sahidullah, M., Delgado, H., Todisco, M., Kinnunen, T., Evans, N., Yamagishi, J., Lee, K-A. (2018). Introduction to voice presentation attack detection and recent advances. In Marcel, S., Nixon, M.S., Fierrez, J., Evans, N. (Eds.), Handbook of Biometric Anti-Spoofing: Presentation Attack Detection (pp. 1-44). Springer. Available at http://cs.joensuu.fi/pages/tkinnu/webpage/pdf/voicePAD-springer2018.pdf
- Schoonenboom, J., & Johnson, R.B. (2017). How to construct a mixed methods research design. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 69, 107-131. http://10.1007/s11577-017-0454-1
- Scolari, C.A. (ed.) (2018). Teens, media and collaborative cultures: exploiting teens' transmedia skills in the classroom. Barcelona: Transmedia Literacy H2020 Research and Innovation Action/Universitat Pompeu Fabra. ISBN: 978 84 697 9843 0
- Scolari, C.A., Masanet, M-J., Guerrero-Pico, M., & Establés, M-J. (2018). Transmedia literacy in the new media ecology: Teens' transmedia skills and informal learning strategies. El Profesional de la Información, 27(4), 801-812. https://doi.org/10.3145/epi.2018.jul.09
- Self, C.C., & Roberts, C. (2019). Credibility. An Integrated Approach to Communication Theory and Research. Routledge.
- Soto-Sanfiel, M. T. (2015). The creative manipulation of time through digital personal narratives. In Springer Series on Cultural Computing (pp. 75-90) https://doi.org/10.1007/978-1-4471-6681-8_5
- Soto-Sanfiel, M.T. (2008a). Efecto del tono de voz y de la percepción del rostro en la formación de impresiones sobre los hablantes mediáticos. Comunicación y Sociedad, 10(junio-diciembre), 129-161.
- Soto-Sanfiel, M.T. (2008b). Impresiones sobre los hablantes mediáticos a partir de la prfesionalidad en su elocución y el contenido de su discurso. Signo y Pensamiento, 53, 246-266.
- Soto-Sanfiel, M.T. (2000). Influencia de la percepción visual del rostro en la credibilidad de la voz. PhD thesis. Barcelona: Universitat Autònoma de Barcelona.
- Soto-Sanfiel, M.T., & Angulo-Brunet, A. (2020). How European adolescents get engaged with films?: Psychometric properties of the narrative engagement scale. Profesional de la información, 29(5), e290502. https://doi.org/10.3145/epi.2020.sep.02
- Soto-Sanfiel, M.T., Villegas-Simón, I., Angulo-Brunet, A. (2018a). Film literacy in secondary schools across Europe: A comparison of five countries' responses to an educational project on cinema. International Journal of Media & Cultural Politics, 14(2), 187-213. https://doi.org/10.1386/macp.14.2.187_1
- Soto-Sanfiel, M.T., Villegas-Simón, I., Angulo-Brunet, A. (2018b). Youngsters and cinema in the European Union: A cross-cultural study on their conceptions and knowledge about cinema. International Communication Gazette, 80(8), 714-745. https://doi.org/10.1177/1748048518759171
- Soto-Sanfiel, M.T., Villegas-Simón, I., Angulo-Brunet, A. (2021). Correlational network visual analysis of adolescents' film entertainment responses. Communication & Society, 34(1). https://doi.org/10.15581/003.34.1.157-175
- Spivak, R. (2019). Deepfakes: The newest way to commit one of the oldest crimes. The Georgetown Law Technology Review, 3(2), 339-400.
- Stebbins, R.A. (2001). Exploratory research in the social sciences. Sage.
- Stiers, D., Larner, J., Kenny, J. et al. (2021). Candidate authenticity: 'To thine own self be true'. Political Behavior, 43, 1181-1204 https://doi.org/10.1007/s11109-019-09589-y
- Štulhofer, A., Matković, T., Kohut, T., Koletić, G., Buško, V., Landripet, I., & Vodopijevec, A. (2021). Are we losing the most relevant cases first? Selective dropout in two longitudinal studies of adolescent pornography use. Archives of Sexual Behaviour, 50, 2215-2226. https://doi.org/10.1007/s10508-021-01931-y
- Sun, Y., Pan, Z., & Shen, L. (2008). Understanding the third-person perception: Evidence from a meta-analysis. Journal of Communication, 58, 280-300. http:¬¬¬//10.1111/j.1460-2466.2008.00385.x
- Sundar, S. S. (2000). Multimedia effects on processing and perception of online news: A study of picture, audio, and video downloads. Journalism and Mass Communication Quarterly, 77(3), 480-499. http://10.1177/107769900007700302
- Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility. In M. J. Metzger & A. J. Flanagin (Eds.), Digital Media, Youth, and Credibility (pp. 72-100). The MIT Press.
- Sundar, S.S., Molina, M.M., & Cho, E. (2021). Seeing is believing: Is video modality more powerful in spreading fake news via online messaging apps? Journal of Computer-Mediated Communication, 1-19. http://10.1093/jcmc/zmab010
- Sykes, B.L., Verma, A. Hancock, B.H. (2018). Aligning sampling and case selection in quantitative-qualitative research designs: Establishing generalizability limits in mixed-method studies. Ethnography, 19(2) 227-253. http:// 10.1177/1466138117725341
- Tahir,R., Batool, B., Jamshed, H., Jameel, M., Anwar, M., Ahmed, F., Zafar, M.A., & Zafar, M.F. (2021). Seeing is believing: Exploring perceptual differences in deepfake videos. Proceedings of the CHI '21, May 8-13, 2021. https://doi.org/10.1145/3411764.3445699
- Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237-246.
- Venkatesh, V., Thong, J.Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
- Wahl-Jorgensen, K. & Carlson, M. (2021). Conjecturing fearful futures: Journalistic discourses on deepfakes, Journalism Practice, 15(6), 803-820. http://doi.org/10.1080/17512786.2021.1908838
- Wang, S-Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). Cnngenerated images are surprisingly easy to spot...for now. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_CNN-Generated_Images_Are_Surprisingly_Easy_to_Spot..._for_Now_CVPR_2020_paper.html
- Wang, X., Yamagishi, J., Todisco, M., Delgado, H., Nautsch, A. et al. (2010). ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech. Computer Speech and Language, 64, pp.101114. ff10.1016/j.csl.2020.101114ff. ffhal-02945493
- Weisman, W.D. & Peña, J.F. (2021). Face the uncanny: The effects of doppelganger talking head avatars on affect-based trust toward artificial intelligence technology are mediated by uncanny valley perceptions. Cyberpsychology, Behavior, and Social Netwoking, 24(3), 182-187. https://doi.org/10.1089/cyber.2020.0175
- Westerlund, M. (2019). The emergence of deepfake technology: A review. Technology Innovation Management Review, 9(11), 39-52. http://doi.org/10.22215/timreview/12
- White, H. & Sabarwal, S. (2014). Quasi-experimental design and methods. UNICEF.
- Wright, S. (2021). Beyond fake news? A longitudinal analysis of how Australian politicians attack and criticise the media on Twitter. Journal of Language & Politics, 20(5), 719-740. https://doi.org/10.1075/jlp.21027.wri
- Wu, F., Ma, Y., & Zhang, Z. (2021). I found a more attractive deepfaked self: The self-enhancement effect in deepfake video exposure. Cyberpsychology, Behavior, and Social Netwoking, 24(3), 173-181. https://doi.org/10.1089/cyber.2020.0173
- Yang, X., Li, Y., & Lyu, S. (2019). Exposing deep fakes using inconsistent head pose. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8261-8265.
- Zhang, Y., Zheng, L., & Thing,V.L.L. (2017). Automated face swapping and its detection. Proceedings of the IEEE International Conference on Signal and Image Processing (ICSIP), pp. 15-19.
- Zibrek, K., Kokkinara, E., & McDonnell, R. (2018). The effect of realistic appearance of virtual characters in immersive environments - Does the character's personality play a role? IEEE Transactions on visualization and computer graphics, 24(4), 1681-1690.